
XML-INTO options for namespaces and
other non-RPG names

 There are two new XML-INTO options to handle XML names containing a
namespace.

o The namespace option, ns, controls how XML-INTO handles XML names
with a namespace when it is matching XML names to the names in the
path option or the subfield names of a data structure.

o The namespace prefix option, nsprefix, allows your RPG program to find
out the values of the namespaces that were removed from the XML names
when the ns=remove option was used to remove the namespace from the
names.

 Also, there is a new value for the case option, case=convert, to handle non-RPG
characters in XML names

© Copyright IBM Corporation 1994, 2011

ns (default keep)

The ns option controls how XML-INTO handles XML names with a namespace when
XML-INTO is matching XML names to the names in the path option or the subfield
names of a data structure. For example, the XML name "cust:name" has the namespace
"cust".

 indicates that the namespace and colon are retained in the XML name. An XML
name with a namespace will not match any RPG name.

 remove indicates that the namespace and colon are removed from the XML name
when matching an RPG name. For example, if the XML name is ABC:DEF, the
name DEF is used when comparing to an RPG name.

 merge indicates that the colon is replaced with underscore in the XML name when
matching an RPG name. For example, if the XML name is ABC:DEF, the name
ABC_DEF is used when comparing to an RPG name.

Notes:

1. The ns option is in effect when handling the path option. The names in the path
must be specified so that they will match the XML names after the processing for
the ns option. For example, if an XML path is abc:info/abc:cust and option
'ns=remove' is specified, then the path option must be specified as 'path=info/
cust'. If option ns=merge is specified, then the path option must be specified as
'path=abc_info/abc_cust'.

2. If option ns=remove is specified, the nsprefix option can be used to get the value
of the namespace for any subfield.

© Copyright IBM Corporation 1994, 2011

Examples of the ns option

1. Option ns=remove is used.

The following definition is used in the example

D info DS QUALIFIED
D type 25A VARYING
D qty 10I 0
D price 7P 3

Assume that file info1.xml contains the following

<abc:info xmlns:abc="http://www.abc.xyz">
 <abc:type>Chair</abc:type>
 <abc:qty>3</abc:qty>
 <abc:price>79.99</abc:price>
</abc:info>

The names in the XML document, such as abc:type, cannot be used for RPG
subfield names.

Option ns=remove specifies that the namespace (abc) and colon should be
removed from the XML name before the XML-INTO operation searches for a
matching subfield or for a name specified in the path option.

The XML name abc:type matches the RPG subfield TYPE after the namespace
abc: is removed.

 xml-into info %xml('info1.xml'
 : 'doc=file ns=remove');
 // info.type = 'Chair'
 // info.qty = 3
 // info.price = 79.99

2. Option ns=merge is used.

The following definition is used in the example

D info DS QUALIFIED
D abc_type 25A VARYING

© Copyright IBM Corporation 1994, 2011

D def_type 25A VARYING
D abc_qty 10I 0
D abc_price 7P 3

Assume that file info2.xml contains the following

<abc:info xmlns:abc="http://www.abc.xyz"
 xmlns:def="http://www.def.xyz">
 <abc:type>Chair</abc:type>
 <abc:qty>3</abc:qty>
 <def:type>Modern</def:type>
 <abc:price>79.99</abc:price>
</abc:info>

The XML document contains name abc:type, with namespace abc.

The XML document also contains name def:type, with namespace def. Option
namespace=remove cannot be used in this case, because there would be two
different XML elements whose names would match an RPG subfield TYPE.

Option ns=merge is specified, indicating that the namespace (abc) should be
merged with the remainder of the XML name, with an underscore separating the
two parts of the name, before the XML-INTO operation searches for a matching
subfield.

The name abc_type matches the RPG subfield ABC_TYPE after the namespace
abc is merged with type. The name def_type matches the RPG subfield
DEF_TYPE after the two parts of the XML name are merged.

The data structure name info does not match the merged XML name abc_info, so
the path option must be specified. The merged name abc_info is used in the path
option.

See namespace prefix option for another way to handle this type of XML
document.

 xml-into info %xml('info2.xml'
 : 'doc=file ns=merge path=abc_info');
 // info.abc_type = 'Chair'
 // info.def_type = 'Modern'
 // info.abc_qty = 3
 // info.abc_price = 79.99

© Copyright IBM Corporation 1994, 2011

nsprefix

The nsprefix option allows your RPG program to determine the values of the namespaces
that were removed from the XML names when option ns=remove was specified.

The nsprefix option specifies the prefix for the names of the subfields that are to receive
the value of the namespace. The nsprefix option is ignored unless option ns=remove is
specified.

For example, if the XML element <abc:def>hello</abc:def>, and options ns=remove and
nsprefix=PFX_ are specified, then RPG subfield DEF will receive the value "hello" and
RPG subfield PFX_DEF will receive the value "abc".

Rules for the nsprefix option:

1. The nsprefix subfield must have alphanumeric or UCS-2 type.

2. If a subfield matched by XML data is an array, the nsprefix subfield must also be
an array, with the same number of elements. If a subfield matched by XML data is
not an array, the nsprefix subfield must not be an array.

3. If an XML element does not have a namespace, the empty string '' will be placed
in the nsprefix subfield.

4. It is not considered an error if a subfield has the correct name for an nsprefix
subfield but it does not meet the criteria for being an nsprefix subfield. For
example, if nsprefix=ns is specified, and the data structure has array subfield
NAME with two elements, and it has alphanumeric array subfield NSNAME with
three elements, the subfield NSNAME is not considered to be an nsprefix subfield,
so XML-INTO will expect to find XML data to set its value.

5. The case option does not affect the namespace value that is placed in the nsprefix
subfield. For example, if the case=convert option is specified, and the XML name
is a--b:name, the value "a--b" will be placed in the nsprefix subfield.

6. The nsprefix option is not considered for the datasubf subfield.

© Copyright IBM Corporation 1994, 2011

Example of the nsprefix option

1. The following definition is used in the example

D info DS QUALIFIED
D type 25A VARYING DIM(2)
D ns_type 10A VARYING DIM(2)
D qty 10I 0
D price 7P 3
D ns_price 10A VARYING

Assume that file info3.xml contains the following

<abc:info xmlns:abc="http://www.abc.xyz"
 xmlns:def="http://www.def.xyz">
 <abc:type>Chair</abc:type>
 <abc:qty>3</abc:qty>
 <def:type>Modern</def:type>
 <abc:price>79.99</abc:price>
</abc:info>

XML-INTO options ns=remove nsprefix=ns_ are specified, so that the RPG
programmer can obtain the namespace used for the XML name matching some of
the RPG subfields. Option nsprefix=ns_ indicates that subfields beginning with
NS_ are candidates for holding the namespace values.

The XML document has two elements that map to the RPG subfield TYPE,
abc:type and def:type.

The TYPE subfield is defined with DIM(2) because there are two XML elements
with the name type, after the namespace is removed. The NS_TYPE subfield is
also defined with DIM(2) so that XML-INTO can place the namespace value for
each occurrence of an XML name matching the TYPE subfield.

When XML-INTO handles the XML name abc:type, it will set the TYPE(1)
subfield to the value 'Chair' and it will set the NS_TYPE(1) subfield to the value
'abc'.

When XML-INTO handles the XML name def:type, it will set the TYPE(2)
subfield to the value 'Modern' and it will set the NS_TYPE(2) subfield to the value
'def'.

© Copyright IBM Corporation 1994, 2011

When XML-INTO handles the XML name abc:qty, it sets the QTY subfield to the
value 3. There is no subfield with the name NS_QTY, so the namespace value is
not saved in a subfield.

When XML-INTO handles the XML name abc:price, it will set the PRICE
subfield to the value 79.99 and it sets the NS_PRICE subfield to the value 'abc'.

 xml-into info %xml('info3.xml'
 : 'doc=file ns=remove nsprefix=ns_');
 // info.type(1) = 'Chair'
 // info.ns_type(1) = 'abc'
 // info.type(2) = 'Modern'
 // info.ns_type(2) = 'def'
 // info.qty = 3
 // info.price = 79.99
 // info.ns_price = 'abc'

© Copyright IBM Corporation 1994, 2011

case (default lower)

The case option specifies the way that XML-INTO should interpret the element and
attribute names in the XML document when searching for XML names that match the the
RPG field names and the names in the path option. If the XML elements are not
interpreted correctly, they will not be successfully matched to the subfield names and the
names in the path, and the operation will fail with status 00353.

 indicates that the XML element and attribute names matching the RPG variable
names are in lower case.

 upper indicates that the XML element and attribute names matching the RPG
variable names are in upper case.

 any indicates that the element and attribute names matching the RPG variable
names are in unknown or mixed case. The XML element and attribute names will
be converted to upper case before comparison to the upper-case RPG variable
names.

 convert indicates that the names in the XML document are converted to valid
RPG names before matching to RPG names. The name is converted by the
following steps:

1. The alphabetic characters in the name are converted to the uppercase A-Z
characters using the *LANGIDSHR conversion table for the job. For
example, an XML name "èñ-Àúb" would be converted to "EN-AUB" in
this step.

2. Any characters in the name that are not A-Z and 0-9 after this step,
including any double-byte character sequences in the name, are converted
to the underscore character. For example, the name "EN-AUB#" will be
converted to "EN_AUB_" during this step.

3. Any remaining underscores are merged into a single underscore. This
includes both underscores that appear in the original name, and

© Copyright IBM Corporation 1994, 2011

underscores that have been added in the previous steps. For example, the
name "EN-$_AUB" would have been converted to "EN___AUB" in the
previous step, and it would be converted to "EN_AUB" in this step.

4. If the first character in the resulting name is the underscore character, it is
removed from the name. For example, the name "_EN_AUB" will be
converted to "EN_AUB" during this step.

5. Warning: Some alphabetic characters may not be converted to A-Z
characters. For example the character 'Ä' is a separate character from A in
the Swedish character set, so it does not map to character 'A' using the
*LANGIDSHR conversion table. In a Swedish job, the XML name
'ABÄC' would not be changed during the first step of the conversion, so
the 'Ä' character would still remain in the name after the first step. The 'Ä'
character would be changed to _ during the second step, so the resulting
name would be 'AB_C' rather than the 'ABAC' name which might be
expected.

© Copyright IBM Corporation 1994, 2011

Examples of the case=convert option

1. The XML document contains names with alphabetic characters that are not valid
characters for RPG subfields.

The following data structures are used in the example

D etudiant ds qualified
D age 3p 0
D nom 25a varying
D ecole 50a varying
D student ds likeds(etudiant)

Assume that file info.xml contains the following lines:

<Étudiant Nom="Élise" Âge="12">
 <École>Collège Saint-Merri</École>
</Étudiant>

a. Options case=convert ccsid=ucs2 are specified. Option case=convert
specifies that the names in the XML document will be converted using the
*LANGIDSHR translation table for the job before matching to the RPG
names in the path and in the list of subfields. The names Étudiant, Âge,
and École will be converted to ETUDIANT, AGE, and ECOLE. The XML
data itself is not converted, so the subfield ecole will receive the value
"Collège Saint-Merri" as it appears in the XML document.

The path option is not necessary, because the default path is the name of
the RPG variable ETUDIANT, which matches the converted form of the
actual XML name, Étudiant.

 xml-into etudiant %xml('info.xml'
 : 'doc=file case=convert '
 + 'ccsid=ucs2');
 // etudiant.nom = 'Élise'
 // etudiant.age = 12
 // etudiant.ecole = 'Collège Saint-Merri'

b. The RPG data structure is called student. The path option must be
specified to indicate that the Étudiant XML element matches the student
data structure. The path option is specified as path=etudiant, to match the
XML name after conversion.

© Copyright IBM Corporation 1994, 2011

 xml-into student %xml('info.xml'
 : 'doc=file case=convert '
 + 'ccsid=ucs2 path=etudiant');
 // student.nom = 'Élise'
 // student.age = 12

// student.ecole = 'Collège Saint-Merri'

2. The XML document contains names with non-alphanumeric characters that XML
supports but that cannot be used in RPG names.

The following data structures are used in the examples

D employee_info ds qualified
D last_name 25a varying
D first_name 25a varying
D is_manager 1a
D emp ds likeds(employee_info)

Assume that file data.xml contains the following lines:

<employee-info is-manager="y">
 <last-name>Smith</last-name>
 <first-name>John</first-name>
</employee-info>

a. Option case=convert is specified. After any conversion of the alphabetic
characters using the *LANGIDSHR table for the job, the next step
converts any remaining characters that are not A-Z or 0-9 to the
underscore character. XML names employee-info, is-manager, last-name,
and first-name are converted to EMPLOYEE_INFO, IS_MANAGER,
LAST_NAME, and FIRST_NAME.

The RPG data structure name employee_info matches the converted form,
EMPLOYEE_INFO, of the XML name employee-info, so the path option
is not required.

 xml-into employee_info %xml('data.xml'
 : 'doc=file case=convert ');
 // employee_info.last_name = 'Smith'
 // employee_info.first_name = 'John'
 // employee_info.is_manager = 'y'

© Copyright IBM Corporation 1994, 2011

b. The RPG data structure is called emp. The path option must be specified to
indicate that the employee-info XML element matches the emp data
structure. The path option is specified as path=employee_info, to match
the XML name after conversion.

 xml-into emp %xml('data.xml'
 : 'doc=file case=convert '
 + 'ccsid=ucs2 path=employee_info');
 // emp.last_name = 'Smith'
 // emp.first_name = 'John'
 // emp.is_manager = 'y'

3. The XML document contains names with double-byte data.

The following definitions are used in the examples

D employee_info_ ds qualified
D last_name_ 25a varying
D first_name_ 25a varying
D is_manager_ 1a

Assume that file data.xml contains the following lines, where "DBCS" represents
double-byte data:

<employee_info_DBCS is_manager_DBCS="y">
 <last_name_DBCS>Smith</last_name_DBCS>
 <first_name_DBCS>John</first_name_DBCS>
</employee_info_DBCS>

Option case=convert is specified. After any conversion of the alphabetic
characters using the *LANGIDSHR table for the job, the next step converts any
remaining characters that are not A-Z or 0-9 to the underscore character, including
DBCS data and the associated shift-out and shift-in characters. After this step, the
XML name last_name_DBCS would be converted to LAST_NAME_____. The
next step merges any remaining underscores, including any underscores that
appeared in the original name, to a single underscore. The resulting name is
LAST_NAME_.

xml-into employee_info_ %xml('data.xml'
 : 'doc=file case=convert '
 + 'ccsid=ucs2');
// employee_info_.last_name_ = 'Smith'
// employee_info_.first_name_ = 'John'
// employee_info_.is_manager_ = 'y'

© Copyright IBM Corporation 1994, 2011

4. The XML document contains names with double-byte data at the beginning of the
name.

The following definitions are used in the examples

D employee_info ds qualified
D last_name 25a varying
D first_name 25a varying
D is_manager 1a

Assume that file data.xml contains the following lines, where "DBCS" represents
double-byte data:

<DBCS_employee_info DBCS_is_manager="y">
 <DBCS_last_name>Smith</DBCS_last_name>
 <DBCS_first_name>John</DBCS_first_name>
</DBCS_employee_info>

Option case=convert is specified. After the conversion of the non-alphanumeric
characters to a single underscore, the name DBCS_last_name is converted to
_LAST_NAME. Since RPG does not support names starting with an underscore,
the initial underscore is removed. The final converted name is LAST_NAME.

xml-into employee_info %xml('data.xml'
 : 'doc=file case=convert '
 + 'ccsid=ucs2');
// employee_info.last_name = 'Smith'
// employee_info.first_name = 'John'
// employee_info.is_manager = 'y'

© Copyright IBM Corporation 1994, 2011

	XML-INTO options for namespaces and other non-RPG names
	ns (default keep)
	Examples of the ns option

	nsprefix
	Example of the nsprefix option

	case (default lower)
	Examples of the case=convert option

