
®

IBM Software Group

© 2012 IBM Corporation

What’s new for RPG in 7.1

Barbara Morris IBM
Craig Jacquez ServIT

IBM Rational software

2

Agenda

Overview of what's new for RPG since 6.1, through PTFs

 Overview of what was new for RPG in 7.1

IBM Rational software

3

ILE RPG PTF enhancements for 6.1 and 7.1

 Several new XML-INTO options

 Performance option for date/time/timestamp

 Get warnings or exceptions for failed CCSID conversions

PTFs for 6.1 (RPG runtime and *CURRENT compiler):

The latest supersedes to SI47610 and SI46495

PTFs for 7.1 (RPG runtime and *CURRENT/*PRV compilers):

The latest supersedes to SI47646, SI45902, and SI46563

IBM Rational software

4

6.1 & 7.1 PTFs: New XML-INTO options:

The first set of PTFs introduced

 datasubf

<emp type=“reg” id=“13573”>John Smith</emp>

Without datasubf, XML-INTO could not get the “John Smith”
data from this XML fragment

 countprefix

When an RPG array was used to capture repeated XML
data, and the DIM was set to the maximum possible

When an XML tag may or may not appear in a particular
XML document

Without countprefix, allowmissing=yes was necessary.
It allowed everything to be missing

IBM Rational software

5

6.1 & 7.1 PTFs: New XML-INTO options: datasubf option

<emp type=“reg” id=“13573”>John Smith</emp>

Problem : For XML-INTO, “emp” has to be an RPG data
structure with subfields “type” and “id” to receive “reg” and
“13573”. But where does “John Smith” go?

D emp ds

D type 10a varying

D id 5p 0

Solution : The datasubf option lets you tell XML-INTO the
name for any subfields that are intended to receive text
data for a data structure.

IBM Rational software

6

6.1 & 7.1 PTFs: New XML-INTO options: datasubf option

<emp type=“reg” id=“13573”>John Smith</emp>

Add another subfield to receive the John Smith data.

D emp ds

D type 10a varying

D id 5p 0

D val 25a varying

Use the datasubf option to tell XML-INTO the name of the
subfields to handle XML data for a data structure

 xml-into emp %xml(xmldoc

 : ‘doc=file datasubf=val’);

IBM Rational software

7

6.1 & 7.1 PTFs: New XML-INTO options: countprefix option

<dept>

 <manager>John Smith</manager>

 <emp>Mary Jones</emp>

 <emp>Sam Thompson</emp>

</dept>

Problem : The “emp” RPG subfield must be an array big enough to
hold the maximum number.

D dept ds

D manager 25a varying

D emp 25a varying DIM(20)

 xml-into dept %xml(xmldoc

 : ‘doc=file allowmissing=yes’);

 Option allowmissing=yes is necessary if there are less than 20 in the
XML document.

IBM Rational software

8

6.1 & 7.1 PTFs: New XML-INTO options: countprefix option

But option allowmissing=yes allows everything to be missing. There
would be no error for the following XML document.

<dept>

</dept>

Solution : Option countprefix lets you add “counter” subfields to your
RPG data structure. With countprefix, you can remove the
allowmissing option and control exactly what you want to be optional.

countprefix gives the prefix for subfield names that are used as
counters. With countprefix=n, the counter for “emp” is “nemp”.

IBM Rational software

9

6.1 & 7.1 PTFs: New XML-INTO options: countprefix option

<dept>

 <manager>John Smith</manager>

 <emp>Mary Jones</emp>

 <emp>Sam Thompson</emp>

</dept>

D dept ds

D manager 25a varying

D emp 25a varying DIM(20)

D numEmp 10i 0

 xml-into dept %xml(xmldoc

 : ‘doc=file countprefix=num’);

The “numEmp” subfield will receive the value 2. This makes it easy to
know how many array elements to process.

IBM Rational software

10

6.1 & 7.1 PTFs: New XML-INTO options: countprefix option

You can use countprefix with non-arrays too, to allow the XML
document to omit a particular element.

If some documents have a “secretary” tag, you can add a secretary

subfield, and a numSecretary to make it optional in the XML
document.

D dept ds

D manager 25a varying

D secretary 25a varying

D numSecretary 10i 0

 xml-into dept %xml(xmldoc

 : ‘doc=file countprefix=num’);
 if numSecretary = 1;
 // the XML document had the <secretary> tag

IBM Rational software

11

6.1 & 7.1 PTFs: New XML-INTO options: PTFs for 6.1 and 7.1

The second set of PTFs introduced

 ns and nsprefix

<emp employee:type=“regular” employee:id=“13573”>

Without the ns option, XML-INTO could not match names like
“employee:type” and “employee:id” to RPG subfield names

 case=convert

<Étudiant Pre-nom="Élise" Âge="12">

Without the case=convert option, XML-INTO could not match names
Étudiant and Âge to RPG subfield names

IBM Rational software

12

6.1 & 7.1 PTFs: New XML-INTO options: namespace option

<emp employee:type=“regular” employee:id=“13573”>

 <standard:name>John Smith</standard:name>

</emp>

Problem: This XML document uses “namespaces” to qualify the XML
tag names. This causes a problem for XML-INTO because the name
“employee:type” cannot match an RPG subfield name.

Solution: The ns (namespace) option

ns=remove: remove the namespace part of the name for subfield
matching. Matches with subfield “type”.

ns=merge: merge the namespace with the rest of the name using
underscore. Matches with subfield “employee_type”

IBM Rational software

13

6.1 & 7.1 PTFs: New XML-INTO options: ns=remove

<emp employee:type=“regular” id=“13573”>

 <standard:name>John Smith</standard:name>

</emp>

The RPG code for ns=remove.

D emp DS qualified

D type 25A

D id 10I 0

D name 25A

xml-into emp %xml('emp.xml' : 'ns=remove');

// emp.type = 'regular'

// emp.id = 13573

// emp.name = 'John Smith'

IBM Rational software

14

6.1 & 7.1 PTFs: New XML-INTO options: ns=merge

<emp employee:type=“regular” id=“13573”>

 <standard:name>John Smith</standard:name>

</emp>

The RPG code for ns=merge.

D emp DS qualified

D employee_type 25A

D id 10I 0

D standard_name 25A

xml-into emp %xml('emp.xml' : 'ns=remove');

// emp.employee_type = 'regular'

// emp.id = 13573

// emp.standard_name = 'John Smith'

IBM Rational software

15

6.1 & 7.1 PTFs: New XML-INTO options: nsprefix

Problem: If the namespace might be different in different XML documents, the
ns=remove option must be used. But the RPG programmer may want to know
what the namespace was.

Solution: Define subfields to receive the namespace that was removed. nsprefix
gives the prefix for the subfield names that will receive the namespace that was
removed from the XML tag.

<emp>

 <standard:type>manager</standard:type>

</emp>

D emp DS qualified

D type 25A

D ns_type 25A

xml-into emp %xml('emp.xml' : 'ns=remove

nsprefix=ns_');

// emp.type = ‘manager‘

// emp.ns_type = 'standard'

IBM Rational software

16

6.1 & 7.1 PTFs: New XML-INTO options: case=convert

New value for the case option lets you tell XML-INTO how to handle
characters in the XML name that can't appear in RPG names

<Étudiant Pre-nom="Élise" Âge="12">

 <École>Collège Saint-Merri</École>

 </Étudiant>

With option case=convert, alphabetic characters like 'Â' are mapped to
the matching A-Z (using the job's *LANGIDSHR table).

Other characters other than 0-9 and underscore are mapped to
underscore.

Then, all underscores are merged to a single underscore.

IBM Rational software

17

6.1 & 7.1 PTFs: New XML-INTO options: case=convert

<Étudiant Pre-nom="Élise" Âge="12">

 <École>Collège Saint-Merri</École>

 </Étudiant>

D etudiant ds qualified

D age 3p 0

D pre_nom 25a varying

D ecole 50a varying

 xml-into etudiant %xml('info.xml'

 : 'case=convert);

 // etudiant.age = 12

 // etudiant.pre_nom = 'Élise'

 // etudiant.ecole = 'Collège Saint-Merri'

IBM Rational software

18

6.1 & 7.1 PTFs: Performance option for date/time/timestamp

Date, time, and timestamp (DTZ) operations can be costly
because the value of a DTZ field is validated every time the
field is used.

New H spec keyword

VALIDATE(*NODATETIME)

This keyword allows the RPG compiler to treat date, time, and

timestamp data as though it were alphanumeric data when it
is convenient for the compiler.

IBM Rational software

19

6.1 & 7.1 PTFs: Performance option for date/time/timestamp

If this keyword is coded, the compiler may skip the validation
step for some operations.

Warning:

This means that incorrect data will not always be detected,
and may be propagated to other date, time, timestamp
fields

Recommendation:

Only use this option in modules where you never have
date, time, or timestamp errors.

Use the TEST operation to check a field before it is used.

The TEST operation will always validate, independent of
the VALIDATE keyword.

IBM Rational software

20

6.1 & 7.1 PTFs: Performance option for date/time/timestamp

Question :
What is currently affected by this keyword?

Answer:
 Moving data between values with the same format and

separator
Assignments (EVAL, MOVE etc)
Moving data between fields and I/O buffers on I and O

specs

 Comparison between values with the same format and
separate AND where the date is formatted as yyyy mm dd, or
where the time is formatted as hh mm ss.

IBM Rational software

21

6.1 & 7.1 PTFs: Performance option for date/time/timestamp

Question :
Might other operations and formats be affected by

VALIDATE(*NODATETIME) in the future?

Answer:
Yes. By coding this keyword, you give the RPG compiler

permission to skip the validation step for any date, time,
timestamp operation.

IBM Rational software

22

6.1 & 7.1 PTFs: Performance option for date/time/timestamp

Question :
Is the performance benefit significant?

Answer:
Yes, for a single operation.

But it is normally only noticeable if you have a significant

proportion of date, time, timestamp operations compared
to the number of I/O operations.

IBM Rational software

23

6.1 & 7.1 PTFs: Warnings or exceptions for CCSID conversions

Sometimes a CCSID conversion will result in a “substitution”
character being placed in the result.

Unicode source data:

The Thai word for “house” is “บ้าน”.

The target is an alphanumeric variable with CCSID 37:
The Thai word for “house” is “<<<”.

CCSID 37 uses the “Latin” character set, and there are no

matching characters for the Thai characters that are in the
Unicode variable. Substitution characters are placed in the
alphanumeric result.

The original Thai characters are all converted to the same

substitution characters, so their value is lost.

IBM Rational software

24

6.1 & 7.1 PTFs: Warnings or exceptions for CCSID conversions

Non-error RPG status code 50 is set when the conversion has
to use substitution characters.

You have to add code to check whether %status = 50

alphaText = unicodeText;

if %status() = 50;

 ... there was loss of data

Two problems:

It’s too awkward to check for status code 50 after every
statement with a CCSID conversion

It’s not always easy to tell which statements have CCSID
conversions

IBM Rational software

25

6.1 & 7.1 PTFs: Get an exception when substitution occurs

CCSIDCVT(*EXCP)

Code new H spec keyword CCSIDCVT(*EXCP) to get an

exception when a CCSID conversion results in a
substitution character.

 New status code 00452

You will need to add messages RNX0452 and RNQ0452 to you

message file. The cover letter of the PTF for the RPG
runtime has CLP code for adding the messages.

IBM Rational software

26

6.1 & 7.1 PTFs: Get an list of CCSID conversions

CCSIDCVT(*LIST)

Code new H spec keyword CCSIDCVT(*LIST) to get a list of all

the CCSID conversions in the module.

For each conversion, it shows
 The source statements using that conversion
 Whether the conversion might result in substitution

characters

If you want both options, code CCSIDCVT(*EXCP:*LIST) or

CCSIDCVT(*LIST:*EXCP)

IBM Rational software

27

6.1 & 7.1 PTFs: Sample CCSIDCVT summary

 C C S I D C o n v e r s i o n s

 From CCSID To CCSID References

RNF7361 834 *JOBRUN 15 25

RNF7357 1200 *JOBRUN 27 921 1073

 *JOBRUN 1200 28 12 321 426

 552 631

RNF7359 835 834 41 302 302

RNF7360 *JOBRUN 834 242 304 305

 * * * * E N D O F C C S I D C O N V E R S I O N S * * * *

 RNF7357 Conversion from UCS-2 to Alpha might not convert all data.

 RNF7358 Conversion from UCS-2 to DBCS might not convert all data.

 RNF7359 Conversion from DBCS to DBCS might not convert all data.

 RNF7360 Conversion from Alpha to DBCS might not convert all data.

 RNF7361 Conversion from DBCS to Alpha might not convert all data.

IBM Rational software

28

6.1 & 7.1 PTFs: How to use the CCSIDCVT summary

You can use this information for two purposes:

 You can improve performance: Reduce the number of
conversions by changing the data types of some of your
variables.

 You can improve the reliability of your program by
eliminating some of the conversions that have the potential
to result in substitution characters. For example, if you have
conversion from UCS-2 to an alphanumeric variable, and
that alphanumeric data is later converted back to UCS-2,
you may be able to change the type of the alphanumeric
variable to UCS-2, to avoid the potential data loss.

IBM Rational software

29

Agenda

 Overview of what's new for RPG since 7.1, through PTFs

Overview of what was new for RPG in 7.1

IBM Rational software

30

ILE RPG enhancements for 7.1

 Open Access: RPG Edition

 Enhancements for arrays

Sort and search a data structure array

Sort arrays either descending or ascending

 Enhancements for defining procedures

Optional prototypes

One string procedure to handle any string type

Fast return values

Soft-code parameter numbers

 Alias names in data structures

 Miscellaneous

Built-in function to scan and replace

Encrypted debug view

Teraspace storage model

SEU syntax checker frozen at the 6.1 level

IBM Rational software

31

7.1: Open Access: RPG Edition

Open Access provides a way for RPG programmers to use
the simple and well-understood RPG I/O model to access
resources and devices that are not directly supported by
RPG.

 Web

 Mobile phones

 IFS files

 Data queues

 Etc etc etc

Instead of the system handling the I/O, instead, a “handler”
program or procedure handles the I/O requests.

IBM Rational software

32

7.1: Open Access: the RPG coding

The RPG coding to use Open Access is simple. Just add the HANDLER
keyword to the F spec.

FmyScreen CF E WORKSTN HANDLER(‘HDLR’)

The parameter for the HANDLER keyword can be

A program

HANDLER(‘MYLIB/MYHANDLER’)

HANDLER(‘MYHANDLER’)

A procedure in a service program

HANDLER(‘MYLIB/MYSRVPGM(myHandler)’)

HANDLER(‘MYSRVPGM(myHandler)’)

A character variable, with one of those values set at runtime

HANDLER(myField)

IBM Rational software

33

7.1: Open Access: the handler

What is more complex is the handler itself.

The handler must do all the work to perform the required I/O.

For a READ operation, the handler must get the data from the device or
resource it is working with, and then transform the data into the form
required by the RPG program.

For example, the handler might get the data like this:

item: Hammer

cost: 200.51

It must transform the data into the Input Buffer subfield of the handler
parameter, in the data types used by the RPG program

0002005100Hammer

IBM Rational software

34

7.1: Open Access: the handler

Handlers are not shipped as part of Open Access.

You have to write the handlers yourself, or more likely, purchase them. Here

are some companies that provide Open Access handlers

Handlers for modernizing WORKSTN files

– ProfoundLogic

– Look Software

– ASNA Wings

Handlers for working with alternate databases

– RJS Software

If you want to try writing your own Open Access handler, the documentation
for writing handlers is in the RPG Café, and in the 7.1 Info Center under
the RPG part of the Programming topic.

IBM Rational software

35

Licensing change for Open Access: RPG Edition

You may have heard that Open Access is a separate product
that you have to buy. That has changed.

On January 31, 2012, IBM announced

Open Access is available as part of the RPG compiler

No longer dependent on the 5733-OAR product

The copy files in library QOAR become part of the WDS
product

 See the RPG Café for full details on the PTFs for 6.1 or 7.1
http://tinyurl.com/rpg-oar-ptfs

http://tinyurl.com/rpg-oar-ptfs
http://tinyurl.com/rpg-oar-ptfs
http://tinyurl.com/rpg-oar-ptfs
http://tinyurl.com/rpg-oar-ptfs
http://tinyurl.com/rpg-oar-ptfs

IBM Rational software

36

RPG: Sort and search a data structure array

Sort a data structure array using one subfield as a key

// sort the info array by name
SORTA info(*).name;

// sort the info array by dueDate
SORTA info(*).dueDate;

Search a data structure array using one subfield as a key

// search for ‘Jack’ in name
pos = %LOOKUP(‘Jack’ : info(*).name);

// search for today’s date in dueDate
pos = %LOOKUP(%date() : info(*).dueDate);

IBM Rational software

37

RPG: Sort and search a data structure array

If you have a complex data structure with nested arrays

An array of family that has sub-arrays of child

family(x).child(y)

Then all except one of the arrays must have a “real” index.

The part up to the (*) index indicates which array will be sorted.

The part after the (*) index indicates the “key” for sorting.

Sort the child array in one of the family elements by the age of the children:

family(2).child(*).age

Sort the family array by the first child’s age

family(*).child(1).age

IBM Rational software

38

RPG: Example of sorting a complex data structure array

5Andy

12Sally2Smith

2Jimmy

child

11Mary

9Polly3Jones

agename

numChildname

IBM Rational software

39

RPG: Example of sorting a complex data structure array

 * A type definition for a child

D child_t ds qualified template

D name 25a varying

D age 5i 0

 * The family array. Each element has a child array.

D family ds qualified dim(5)

D name 25a varying

D numChild 5i 0

D child likeds(child_t) dim(10)

5Andy

12Sally2Smith

2Jimmy

child

11Mary

9Polly3Jones

agename

numChildname

IBM Rational software

40

RPG: Example of sorting a complex data structure array

// sort the child arrays by age, oldest first

for i = 1 to numFamily;

 SORTA(D) %SUBARR (family(i).child(*).age

 : 1 : family(i).numChild);

endfor;

Sort family(i).child by age, descending

11Mary

child

5Andy

9Polly

3Jones

2Jimmy

12Sally2Smith

agename

numChildname

IBM Rational software

41

RPG: Example of sorting a complex data structure array

// sort the family array by age of first

child

SORTA family(*).child(1).age;

Sort family by child(1).age, ascending

11Mary3Jones

9Polly

5Andy

child

2Jimmy

12Sally2Smith

agename

numChildname

IBM Rational software

42

RPG: Sort ascending or descending

Non-sequenced arrays can be sorted either ascending or

descending.

D meetings S D DIM(100)

 /free

 // sort descending, with the

 // most recent date first

 sorta(d) meetings;

(D) extender indicates a descending sort.

(A) Extender indicates ascending (default).

IBM Rational software

43

RPG: Optional prototypes

If a program or procedure is not called by another RPG
module, it is optional to specify the prototype.

These are some of the programs and procedures that do not
require an RPG prototype

 An exit program, or the command-processing program for
a command

 A program or procedure that is never intended to be called
from RPG

 A procedure that is not exported from the module

IBM Rational software

44

RPG: Optional prototypes

Rules:

1. If an RPG procedure is called from another RPG module, it must
have a prototype

2. All modules either calling the procedure and the module that defines
the procedure must all use the same prototype (use a /COPY file)

The RPG compiler cannot enforce these rules

But they are simple to follow if you remember one of the purposes of a
prototype:

The prototype ensures that the callers of a procedure pass

the parameters according to the way the procedure expects them

them to be passed.

IBM Rational software

45

RPG: Optional prototypes: Example

H main(hello)

P hello b

 /free

 dsply ('Hello ' + getName());

 /end-free

P hello e

P getName b

D pi 10a

D ans s 10

 /free

 dsply ('What is your name?') '' ans;
 return ans;

 /end-free

P getname e

IBM Rational software

46

RPG: Implicit CCSID conversion for parameters

Previous support : implicit conversion between the different string types
(alpha, unicode, dbcs) for assignment

New support : implicit conversion on parameter passing

 Enables writing a single procedure that can handle any string type.

 The procedure is written to have Unicode parameters and a Unicode
return value, and the RPG compiler handles any necessary conversions.

// makeTitle() upper-cases and centers the parameter

alphaTitle = makeTitle(alphaValue : 50);

ucs2Title = makeTitle(ucs2Value : 50);

dbcsTitle = makeTitle(dbcsValue : 50);

IBM Rational software

47

RPG: Performance returning large values

If you have a lot of calls to procedures that return large values,
performance can be noticeably poor

title = center(getDesc(id));

One possible solution is to change the procedures so they use
a parameter instead of a return value

getDesc(tempDesc : id);

center(tempTitle : tempDesc);

title = tempTitle;

But that is awkward. The temp fields have to defined exactly
the same as the parameters.

IBM Rational software

48

RPG: Performance returning large values

Solution: use the RTNPARM keyword.

The RPG compiler changes the return value to be an extra parameter.

 The speed of using a parameter with the convenience of using a return
value

 Especially noticeable when the prototyped return value is a large varying
length value

D center pr 100000a varying
D rtnparm
D text 50000a const varying
D len 10i 0 value
D title s 100a varying
 /free
 title = center ('Chapter 1' : 60);

IBM Rational software

49

RPG: Performance returning large values

RTNPARM is internal to RPG.

If you want to call a RTNPARM procedure from another
language, you must define it in the other language as though
it has an extra parameter, and no return value.

D getDesc pr 1000a rtnparm
D id 9p 0 const

To call this from CL, add the “desc” parameter first:

dcl &id type(*dec) len(9 0)
dcl &desc type(*char) len(1000)

callprc getDesc parm(&desc &id)

IBM Rational software

50

RPG: Softcode the parameter number

The %PARMNUM built-in function returns a parameter’s position in the
parameter list.

D myProc pi 10A OPDESC
D company 25A
D city 25A OPTIONS(*VARSIZE)

Problems solved by %PARMNUM:

Pass a parameter number to a Parameter-Information API

 CEEDOD (2 : more parms); // hard to understand

 CEEDOD (%PARMNUM(city) : more parms); // better

Check to see if the number of passed parameters is high enough for a
particular parameter

 if %parms >= 1; // hard to understand

 if %parms >= %PARNUM(company); // better

IBM Rational software

51

RPG: %PARMNUM is imperative with RTNPARM

When a procedure is defined with RTNPARM
 The return value is handled as an extra parameter under the

covers
 The extra parameter is the first parameter
 %PARMS and the parameter APIs use the true number
 The apparent parameter number is off by one

 D myProc pi 10A RTNPARM
 ... RTNPARM hidden parameter
 D parm1 25A
 D parm2 25A

The ‘parm2’ parameter looks like the second parameter, but it
is actually the third parameter.

%PARMNUM must be used with %PARMS or the CEE APIs

that take parameter numbers.

IBM Rational software

52

RPG: Support for ALIAS names

Background

 Fields in externally described files can have a standard name
up to 10 characters and an alternate (ALIAS) name up to 128
characters.

 RPG III only allowed 6 characters, so many databases have
files with cryptic names like CUSNAM, CUSADR. The files
often have alternate names such as CUSTOMER_NAME and
CUSTOMER_ADDRESS, that can be used in SQL queries.

 RPG programmers would like to use the alternate names in
their RPG programs.

IBM Rational software

53

RPG: Support for ALIAS names in data structures

New ALIAS keyword for RPG

 When ALIAS is specified, RPG will use the alternate name
instead of the 10-character standard name.

 Supported on D specs for any externally-described data
structure.

 Supported on some F specs, and then used for LIKEREC
data structures.

Supported for qualified files or local files in subprocedures.

Not supported for 99.99% of your files (unfortunately).

The subfields of the data structure will have the alternate
names instead of the standard name.

IBM Rational software

54

RPG: Support for ALIAS names

A R CUSTREC

A CUSTNM 25A ALIAS(CUSTOMER_NAME)

A CUSTAD 25A ALIAS(CUSTOMER_ADDRESS)

A ID 10P 0

D custDs e ds ALIAS

D QUALIFIED EXTNAME(custFile)

/free

 custDs.customer_name = 'John Smith';

 custDs.customer_address = '123 Mockingbird Lane';

 custDs.id = 12345;

IBM Rational software

55

RPG: New built-in function %SCANRPL

The %SCANRPL built-in function replaces all occurrences a
string with another string.

fileErr = ’File &1 not found. Please create &1.’;

msg = %scanrpl (’&1’ : filename : fileErr);

// msg = ’File MYFILE not found. Please create MYFILE.’

Problem solved by %SCANRPL:

Hand-written versions of scan-and-replace tend to be large,
error prone, and difficult to maintain.

IBM Rational software

56

Other 7.1 enhancements

A couple of enhancements that are not just for RPG

 Encrypted debug view

 Teraspace storage model

IBM Rational software

57

Encrypt the debug listing view (all ILE compilers)

The problem:

 You want to ship a debuggable version of your application to your
customers, but you don’t want them to be able to read your source code
through the debug view

The solution:

 Encrypt the debug view so that the debug view is only visible if the person
knows the encryption key.

==> CRTBNDRPG MYPGM DBGENCKEY(‘my secret code’)

 Then either

==> STRDBG MYPGM DBGENCKEY(‘my secret code’)

 Or

==> STRDBG MYPGM

and wait to be prompted for the encryption key

IBM Rational software

58

Teraspace storage model (RPG and COBOL)

The problems:

 16MB automatic storage limits with the single-level storage
model, for a single procedure, and for all the procedures on
the call stack

 RPG’s %ALLOC and %REALLOC have a 16MB limit

IBM Rational software

59

Teraspace storage model (RPG and COBOL)

The solution: use the teraspace storage model

 Much higher limits for automatic storage.

 Compile with STGMDL(*TERASPACE) to always use the
teraspace storage model

 Can compile *CALLER and programs and service programs
with STGMDL(*INHERIT) so they can be called from either
single-level or teraspace programs

IBM Rational software

60

Teraspace storage model (RPG and COBOL)

Challenges if you change to use the teraspace storage
model

 Any one activation group can only use one storage model.

Either change every program and service program that
uses an activation group to be STGMLD(*TERASPACE) or
STGMDL(*INHERIT)

Or

Split up the programs and service programs into two
different activation groups, say MYACTGRP and
MYACTGRPTS.

 This requires careful analysis of overrides, commitment
control, shared files etc

IBM Rational software

61

Teraspace storage model (RPG and COBOL)

Larger RPG allocations can be used without completely
changing to the teraspace storage model:

RPG’s %ALLOC and %REALLOC can allocate teraspace with
a much higher limit

Teraspace allocations are the default in the teraspace
storage model

Specify H-spec ALLOC(*TERASPACE) to have teraspace
allocations in any storage model

IBM Rational software

62 62

© Copyright IBM Corporation 2012. All rights reserved.

The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express or implied. IBM shall not be responsible
for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these materials
to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way.

IBM, the IBM logo, the on-demand business logo, Rational, the Rational logo, and other IBM products and services are trademarks of the International Business Machines Corporation,
in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

http://www.ibm.com/software/rational

